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INTRODUCTION

Nickel-cadmium cells have long been used in batteries for space satellites,

and nickel-hydrogen cells are starting to replace these, both in geosynchronous
(GEO) and low-earth orbit (LEO) spacecraft. The cycle life and depth-of-

discharge requirements for geosynchronous orbit can be readily met, but the

requirements for LEO operation are much more stringent. Nickel-hydrogen
batteries will be used in Space Station Freedom, which will require very long

cycle lives of at least 30,000 cycles at 354 depth of discharge. In this cell,

the life-limiting factor is almost always the nickel electrode. Impedance

spectroscopy is being investigated as a means of determining the failure modes

of nickel electrodes and a possible means of differentiating between good and

bad electrodes and cells at an early stage of life. This method allows a number

of electrode parameters to be determined simultaneously and is also a method that

can be used for in-situ, non-destructive study of electrodes and cells over a

wide range of cell and electrode sizes.

Many impedance studies have been carried out on nickel electrodes and Ni/Cd
and Ni/H 2 cells. Some studies have been made while the cells or electrodes were

being discharged (Ref. 1), others at various equilibrium voltages or states of

charge (Refs. 2-8). The impedances have been found to be strongly dependent on

the state of charge and/or voltage and on the procedure used to obtain the

measurements. The studies have been similar qualitatively but not quanti-

tatively. In order for impedance to be used as a diagnostic tool and for

quantitative comparisons to be made, more reproducible measurements are

necessary.

As part of a study of loss of capacity in Ni/H2 ceils for space use

(Ref. 9), electrochemically impregnated nickel electrodes for Ni/H_cells (3.5")
diameter) were obtained from the four U.S. manufacturers and cycled until the

capacity was stable. Impedance measurements were then made in both the usual

314 KOH electrolyte and in 264 KOH, since recent studies have indicated that the

latter electrolyte can increase the life of the Ni/H 2 cells by as much as a

factor of ten. Impedance spectra of several electrodes were measured as a

function of voltage to determine the optimum voltages for comparison. At high

states of charge the impedances are very low and do not vary much from electrode
to electrode while at low states of charge there are often large difference

between electrodes. Therefore, the impedances of the electrodes were measured

at a voltage corresponding to a very low state of charge in order to capitalize
on these differences. One-third of the electrodes were also measured in the

charged state. Large differences were observed at the lower voltages between

the electrodes from different manufacturers, and small differences between
individual electrodes from the same manufacturer. Differences were also seen

between the electrodes in 264 KOH and 314 KOH. The full: significance of these



results is not yet clear, but the results seem to correlate with preliminary data
from life testing of full-size cells.

EXPERIMENTAL

The initial measurements of impedance as a function of voltage and the
measurements on the individual electrodes at the comparison voltages were made
using the Princeton Applied Research (PAR) M378 Impedance System using a PAR
model 5208 Lock-in Analyzer and a PAR Model 273 Potentiostat/Galvanostat. More
detailed measurements as a function of voltage were later made using the
Solartron 1250 Frequency Response Analyzer and the Solartron 1286 Electrochemical
Interface.

Fifteen electrodes were obtained from each of four U.S. manufacturers:
Gates Aerospace Batteries, Whittaker-Yardney, Hughes, and Eagle-Picher (Joplin,
MO). Twelve electrodes from each manufacturer were cycled in 31_ KOH, three in
26_ KOH. The electrodes were given six to seven cycles of formation cycling at
an estimated C/I0 rate followed by discharge at a C/5 rate to 1.00 V vs an
amalgamated zinc reference electrode. The preliminary capacities determined from
the formation cycling were then used to determine the currents for the final
determination of capacity. In these measurements the electrodes were cycled at
a C/2 charge rate and discharged at a C/4 rate for five to six cycles to 1.00 V
vs the amalgamated zinc reference. It was more convenient to use amalgamated
zinc electrodes than Hg/HgO electrodes for the formation cycling and capacity
determination since fifteen electrodes were being cycled simultaneously.
However, Hg/HgO electrodes were used for the impedance measurements since this
is a more stable reference electrode. The voltage at which the discharge was
terminated during the cycling (I.00 V vs the zinc electrodes) corresponds to
about -0.41 V with respect to the Hg/HgO reference electrode used in the
impedance measurements. After the final discharge, the electrodes were equili-
brated at 0.200 V vs the Hg/HgO reference electrode for an hour before the
impedance measurements. One-third of the electrodes were also partially charged
and equilibrated for an hour at 0.400 V before measurement at that potential.
(The state of charge at 0.200 V is about I_ and that at 0.400 V is between 9 and
189, depending on the manufacturer and the concentration of KOH).

RESULTS AND DISCUSSION

The impedances were analyzed assuming a simple circuit as shown in Figure i
(Ref. 10). For a planar electrode, the diameter of the semicircle in the complex
plane plot is the kinetic resistance, and the slope of the Warburg plot (Zreal
vs w-I_) is inversely proportional to CD-I/2 where C is the concentration of the
diffusing specles and D is the diffusion coefficient. There is as yet no
adequate theoretical treatment of the impedance of a porous electrode with
insoluble reactant species such as the nickel electrode. However, the impedance
curves for porous electrodes have the same general shapes as the curves for
planar electrodes, so we will analyze them in the same way. The kinetic
resistances and Warburg slopes that we obtain will be valid empirical numbers
for comparison of different electrodes, but in the absence of a theoretical
treatment we cannot calculate the true exchange currents, diffusion coefficients,
or concentrations of diffusing species.



Figures 2 and 3 give some typical data for impedance as a function of

voltage for an electrode from Gates Aerospace Batteries plotted in the Bode

representation. In order to get reproducible measurements it was necessary to

begin with fully-charged electrodes. For this set of experiments, the voltage
was lowered in increments, and electrodes were held overnight at each potential

to stabilize them. It can be seen from Figure 2 that as the voltage is

decreased, the magnitude of the impedance rises by several orders of magnitude

at the lower frequencies. However, at -0.927 V vs the Hg/HgO electrode

(corresponding to the potential of the hydrogen electrode, i.e., the potential
of a short-circuited cell), the impedance decreases at the lower frequencies.

This may be due to the reduction of a small fraction of the hydroxide to metal
atoms or clusters which reduce the kinetic resistance and increase the rate of

diffusion. Further study is needed to clarify this phenomenon.

In a simple RC circuit such as shown in Figure I, a single minima is

produced in the Bode angle plots. The data in Figure 3 indicate that there are

at ]east two overlapping minima, thus more than one RC circuit is needed to fully

model the data. One possible alternative circuit is given in Figure 4. More

accurate measurements of the impedance as a function of voltage are now under

way, and the data are being analyzed in terms of this model and others.

Nyquist plots of some of the higher frequency data are given in Figure 5

showing the increase in kinetic resistance as the voltage is lowered, in

particular at the lower voltages. The Warburg plots in Figure 6 illustrate the
increase in slope as the voltage is lowered. The CDI/2 term is thus decreasing

as the voltage becomes lower, signifying an increased resistance to diffusion.
The data shown in these figures is for the voltage range where the greatest

changes in impedances occur as the voltage is lowered.

Electrodes from other manufacturers show similar changes with voltage, but

the results differ quantitatively. Apparently slight differences in the method

of preparation and formation of the electrodes are significant, which explains

why impedance measurements from different researchers vary significantly. It

was found that impedances measured in the range of 0.325 V to 0.175 V vs Hg/HgO

not only showed the greatest changes with voltage but also provided the greatest
differentiation between electrodes from different manufacturers. These voltages

correspond to very low states-of-charge. At higher voltages the impedances are

very low, and there are only small variations between electrodes from different

manufacturers. Impedances at voltages lower than 0.175 V are larger, but equili-

bration times are longer and the scatter is much greater. A voltage of 0.200

V was chosen for the comparisons between the electrodes from different manufac-

turers. (Measurements were also made at 0.400 V, but at this voltage the

impedances are much smaller and the differences_betweenthe electrodesfrom the
four manufacturers are negligible, so the data are not presented here).

These voltages can be converted to the standard hydrogen electrode

potential scale in the same KOH concentration by adding 0.926 V, the difference
between the standard potential of the hydrogen electrode in basic solution and

that of the Hg/HgO electrode (Ref. 11). The relationship of these voltages to

voltages in real Ni/H2 cells is not exact, due to several factors. Thus a

voltage of 0.200 V for the nickel electrode vs the Hg/HgO electrode would

correspond to a voltage of 1.126 V vs a hydrogen electrode at I atm. pressure.

However, in Ni/H 2 cells the hydrogen pressure varies over the course of the



charge-discharge cycle and will affect the voltage of the hydrogen electrode and
thus the cell voltage. A typical pressure for a newNi/H2 cell in the discharged
state is about 50 PSIG(4.40 atm.). (The pressure is about 600 PSIGin the fully
charged condition). When the nickel electrode is 0.200 V vs Hg/HgO, the
electrode is almost fully discharged, so the correction to the hydrogen electrode
and cell voltage becauseof the increased hydrogen pressure is about 19 mV. This
meansthat a nickel electrode voltage of 0.200 V vs the Hg/HgOelectrode is
equivalent to a final voltage of about 1.145 V vs the hydrogen electrode in a
typical Ni/H2 cell. The corresponding voltage for a Ni/Cd cell is 1.107 V.

An additional difficulty in comparing potentials in a real cell with those
relative to the Hg/HgOreference electrode is the effect of changes of concen-
tration of KOHand H20. During discharge of a Ni/H2 cell, hydroxide ions are
produced at the nickel electrode and consumedat the hydrogen electrode. Water
is consumedat the nickel electrode and produced at the hydrogen electrode. In
a Ni/Cd cell hydroxide ions are consumedat the Cdelectrode. The concentration
of KOHwithin the electrodes will therefore depend not only on the initial
concentration added to the cell but will vary with the rate of discharge and the
rate of diffusion of KOHand water into and out of the electrodes. This will
affect the potentials of both electrodes to a small extent unless the system is
equilibrated for sufficient time for all species to cometo uniform concentra-
tions. The effect of changes in KOHconcentration will probably be muchgreater
in a real cell where there is a minimal amount of electrolyte than in these
beaker experiments against a Hg/HgOreference electrode where there a large
excess of electrolyte. This effect cannot be corrected for but is a source of
a small uncertainty.

Figures 7 and 8 are typical complex plane plots for the electrodes from
the different manufacturers at 0.200 V. We observed small differences in
electrodes from the samemanufacturer, but differences between electrodes from
different manufacturers are much larger. Impedancesat 3]_ KOHare larger for
the electrodes from Hughes than for the Eagle-Picher and Gates electrodes and
much larger for the Whittaker-Yardney electrodes. In 26_ the impedances of
electrodes from Eagle-Picher and Yardney do not differ greatly from those in 31_
KOH. The impedanceof the Eagle-Picher electrode is still small and that of the
Yardney electrode is still larger than the others. However, the impedanceof
the Gates electrode is much larger in 26_ KOH;that of the Hugheselectrode is
muchsmaller.

Thevalues for the average kinetic resistances andWarburgslopes for these
electrodes are listed in Table I using the simplistic model shown in Figure I.
The values for the kinetic resistances for the Gates and Eagle-Picher electrodes
are estimated, since these original measurementsshoweda great deal of scatter.
More accurate measurementsare nowbeing carried out with more sensitive instru-
ments.

In terms of cell performance, a larger kinetic resistance means than an
electrode would have a greater kinetic polarization (overvoltage) than one with
a lower kinetic resistance. Likewise, since a larger Warburg slope meansthat
diffusion is slower, an electrode with a larger slope would have a greater
diffusion overvoitage. Thus an electrode with a low kinetic resistance and a
low Warburg slope would be expected to give better performance.

4



Limited cell tests that wehave carried out in the past indicate a probable
correlation between the impedance parameters and cell life and performance
(Ref. 12). Cells from Yardneyhave had muchshorter cycle lives at high depths-
of-discharge, although they have had excellent cycle lives at low depths-of-
discharge (higher voltages), where the impedanceparameters are comparable to
those of other manufacturers (Ref. 13). Boiler plate cells from Hughesusing
26_ KOHhave shown much longer cycle lives than those cycled in 31_ KOH,
consistent with the lower impedancethat we see in the 26_ KOH(Ref. 14). These
electrodes have a higher Co level than those from other manufacturers, and this
maybe responsible for the longer life in 26_ as well as the lower impedance.

These results obviously are only applicable to electrodes manufactured
under the sameconditions as the electrodes examined in this study and with the
same cycling history. Changes in manufacturing processes will change the
impedancesas well as cell performance. Although the nickel electrode is usually
the dominating factor in the performance of the cell, other factors such as
separators, electrolyte level, etc. will affect performance. Thus the impedance
of the nickel electrode by itself will probably predict cell performance in most
cases, but in some instances these other factors maypredominate.

We are also examining the changes in impedance with cycling. The
electrodes that were studied here had undergone formation cycling in the factory
and were cycled sufficiently before the impedancetesting to come to a stable
capacity. The impedancesof electrodes from each manufacturer were very similar,
indicating that reproducible results can be obtained if electrodes are cycled
in the sameway. However, measurementson the 65 AHflightweight cells being
tested for the Space Station Freedomand on several flightweight Ni/Cd cells
indicate that gradual changes in impedancetake place during early cycling even
after a stable capacity is reached. Significant impedancechanges apparently
take place throughout the life of the electrode, not just late in its cycle life.
In somecases the impedanceseemsto increase in the early stages of cycling and
in other cases it decreases. Thus valid comparisons can only be made between
cells or electrodes that have the samecycling history. In order to further
understand the impedanceof nickel electrodes, we are carrying out more detailed
experiments on the impedances of these electrodes, not only as functions of
manufacturer, KOHconcentration, and voltage, but also as a function of cycle
life. Weare also following the impedancesof the Space Station cells during
their long-term cycling to failure at 35_ DODunder a Low Earth Orbit cycling
regime of 55 minutes charge followed by a 35 minute discharge. Weexpect the
measurementson these electrodes and cells to provide information about the
degradation of nickel electrodes as a function of cycling. Wehope that it will
eventually be possible to make reliable predictions of cycle life based on
impedancemeasurements.

SUMMARY

Impedancesof fifteen electrodes from each of the four U.S. manufacturers
were measuredat 0.200 V vs the Hg/HgOreference electrode. This corresponds
to a voltage of ].145 for a Ni/H2 cell. Measurementswere also made of a
representative sampleof these at 0.400 V. At the higher voltage, the impedances
were small and very similar, but at the lower voltage there were major differ-
ences betweenmanufacturers. Electrodes from the samemanufacturer showedonly



small differences. The impedances of electrodes from two manufacturers were
considerably different in 264 KOHfrom those in 314 KOH. These preliminary
results seemto correlate with the limited data from earlier life testing of
cells from these manufacturers. Weare following the impedancesof cells being
tested for Space Station Freedomand are doing more impedancemeasurementsof
electrodes as functions of manufacturer, voltage, electrolyte concentration, and
cycle history in the hopesof finding better correlations of impedancewith life.
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TABLE I. - AVERAGE KINETIC RESISTANCES AND WARBURG SLOPES FOR THE

ELECTRODES FROM THE FOUR DIFFERENT MANUFACTURERS AT

0.200 V vs. Hg/HgO

[Electrode area 42.9 cm2.]

Rkin '

Warburg slope,

sec -I/2

Hughes

26 31

O.l 0.9

0.016 0.071

Manufacturer

Gates Eagl e-Pi cher

KOH concentration, percent

26 31 26 31

1.7 0.6 1.5 1.5

0.041 0.3l 0.085 0.060

Yardney

26 31

•3'.9 2.5

0.32 0.39

Odl

Rkin
Zw

Figure 1. - Simplified circuit used for analysis of impedance data.
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Figure 2. - Bode diagram, magnitude of impedance as func-
tion of voltage, Gates electrode, 42.9 cm2.
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Figure 3. - Bode diagram, phase angle as function of
voltage, Gates electrode, 42.9 cm2.
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Figure 4. - Possible alternative circuit for more detailed analysis of
impedance of nickel electrodes.
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Figure 6. - Warburg plot of some of the impedance
data for the Gates electrode as functions of voltage in
the range where the greatest changes take place.
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Figure 5. - Complex plane plot of some of the impedance
data for the Gates electrode as functions of voltage in
the range where the greatest changes take place.
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Figure 7. - Complex plane plot for impedance of electrodes at
0.200 V from two of the manufacturers in 31 and 26% KOH.
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